219

A compositional semantics for the Turing machine

Peter van Emde Boas*

Departments of Mathematics and Compuler Science, Universily of Amsterdam,
Nieuwe Achiergracht 166, 1018 WV Amsterdeam
Dedicated to J.W. de Bakker at the occasion of his 25-th anniversary at the CWI
March 9, 1989

Abstract

In the current tradition of constructing compositional semantics for programming
languages the machine language of the most popular model in structural complexity
theory seems to have been overlooked. We show that this gap in the literature can
easily be filled. Notwithstanding the fact that the contrary is generally believed, we
show that the standard semantics for Turing machines is compositional, provided the
right syntax is used for describing their programs. This presents one more example
for Janssen’s observation that lack of compositionality in well understood semantic
situations is frequently caused by syntactic prejudices and not by real semantic prob-
lems.

1 Why a semantics for the Turing machine is needed

The study of semantics of programming languages has been an important research area
in computer science in general and, in particular at the CWI (formerly the Mathemat-
ical Centre) for the past 25 years. The present volume and the seminar organized at
the occasion of de Bakkers 25t* anniversary at the CWI gives witness to his important
contributions to this research area.

I have always considered myself to be a side-liner watching this game of semantics.
When I encountered semantical investigations for the first time about 20 years ago, I
was amazed by the amount of intellectual effort invested in issues of programming which
I believed at that time to be self evident and well understood. It took only a short
period to understand that the gap between our intuitive operational understanding of
computational processes and their formal representation by mathematical models is huge.
The trails which are designed for traversing this gap are frequented by toads and dragons,
with pitfalls and swampy pools everywhere around, bringing misfortune to the careless
wanderer. I have also learned that our original semantic intuition remains the only compass
which will guide us out of the murky waters. Our intuition promises us the existence of
the other side of the river and shows us in which direction to move. If we stick to its
course we will not be swept away into a bottomless whirlpool of formalisms and symbol
manipulation strategies which remain stuck in the translation.

*also CWI-AP6, Amsterdam

220

My experience of the past two decades also shows that semantical investigations follow
fashions which arrive and go away. When I got introduced into the area characterizing
recursive functions by least fixed-point semantics was the hot topic. Next we had a long
period where models and proof theories for concurrency formed the backbone of the se-
mantics activities. We have seen the algebraic approach to data types, and more recently
we have seen a large amount of interest in the study of semantical problems arising in
the weird language we call Prolog. The bare fact that the semantics of this language has
become a research topic already presents a convincing argument against the claim that a
Prolog has an evident semantics defined by its logic clauses.

A semantic topic which I have never encountered in these studies is the semantics of
the Turing machine. This device represents (together with the Random access machine
and, more recently, the parallel versions of the RAM) the work-horse of computational
complexity theory. Being one of the most general accepted formalisms for universal com-
putability it pops up in almost every corner of theoretical and practical computer science.
It is also a device which predates the real computers by almost a decade [9], and a device
which has hardly changed its fundamental structure during the half century it has been
among us.

As far as semantic theory is concerned it seems that complexity theory still lives
within the stone age of pure operationalism. In the basic courses and textbooks of in-
troductory computation theory Turing machines are given an operational interpretation.
Turing machine programs are only explicitly constructed in very simple examples and the
corresponding exercises. In more advanced theory explicit programs are never specified;
every algorithm is suggested and made believed to be programmed on Turing machines
by force of intimidation. This practice is justified on the basis of the so-called Inessential
use of Church’ thesis: Whatever we feel to be computable can be brought within the scope
of our formal models.

Since there are no real Turing machine programs there is no need for proving that these
programs achieve what they are intended to do. Since there is no need to prove programs
correct there is no specified semantics relative which these programs should meet their
specifications. Neither does there exist a specification language aimed at Turing machines.

Faced with this absence of even the bare minimum of a semantic theory for a machine
formalism which is generally believed to be of some importance one might ask for the
cause to this deplorable state of affairs. The following observations are in order before
trying to answer this question:

o There exists a well understood operational semantics for Turing machine computa-
tions. This semantics is presented in all textbooks on introduction to computation
theory which describe the model. See for example (3].

o It is common knowledge that proving properties of Turing machine programs is an
undecidable problem. Starting from the undecidability of the Halting problem it is
an elementary exercise to show that virtually every behavioral property of Turing
machines is also undecidable. The same holds for all nontrivial extensional properties
(properties which are completely determined by the function computed by the Turing
machine), as follows from Rice’s theorem [8]

e Proving properties of Turing machine programs is not only hard in theory as exem-

221

plified by the above undecidability results, but even the small instances are highly
intractable. This is illustrated for example by the problem of evaluating the initial
values of the so-called busy beaver function: the largest number of 1-symbols printed
by a k-state Turing machine program over the alphabet {0,1}) as a function of k.
The evaluation of this function for k£ = 5 was the subject of a competition organized
at the occasion of the 1983 GI TCS meeting at Dortmund; the winner only could
have obtained his result using special purpose hardware [2]

e It is generally believed that Turing machine programs rank among the most struc-
tureless programs one encounters in the universe. Every additional instruction may
screw up the meaning of a well understood program in such a way that even the
cleverest machine code hackers may fail to understand what’s going on

Each of the above four observations can be invoked as an excuse for the absence of a
well explored semantics theory of the Turing machine. In the line of the first remark one
simply can deny that there exists a problem. We know perfectly well what we are talking
about. But since the standard semantics is operational it is evident that this belief is
unfounded and should be shattered.

The second observation leads to the excuse that it doesn’t make sense to design a
theory of Turing machines since we know beforehand that all problems will be unsolvable.
This is an invalid argument in the light of the observation that researchers in semantics
have never hesitated to look at semantical theories where the underlying validity problem
is even far harder. The halting problem of Turing automata is only £$-complete whereas
many programming logics have II!-complete validity/satisfiability problems.

The third observations illustrates the lack of well designed paradigmatic examples of
solved semantical problems in the area of Turing machine programs. This is just a matter
of lack of interest of the research community. If nothing else is invented one can always
redo the factorial example or rebuild the towers of Hanoi.

The last argument simply illustrates the fundamental discrepancy between the average
researcher in semantics and its true vocation. He should investigate the semantics problems
of real programmers using real-life programming languages and not be side-tracked by the
clean well-structured toy languages designed by the theoreticians for their own benefit. We
simply can’t wait until humanity has decided that it will believe the prophets and start
to program in a well structured manner [1]. As long as we can't cope with real Turing
programs we have not yet fulfilled our task.

I believe therefore that after 25 years time has arrived that the semantics community
should attack the problem of the Turing machine by taking its semantics serious. As
a small contribution towards completion of this program I will in this note discuss the
issue of compositionality of the semantics of Turing machines. This clearly represents a
necessary preliminary step since it is generally accepted that there exist no alternative for
working compositional in semantics [6].

2 The standard semantics of the Turing machine

For the purpose of this note I will use the single-tape Turing automaton in stead of the
usual model from complexity theory where one has special input tapes, output tapes, and

222

work tapes. It is folklore knowledge that all versions of Turing automata are equivalent
in the sense that they can simulate each other with polynomial time overhead and con-
stant factor overhead in space [10]. This implies that all models are equivalent from the
perspective of structural complexity theory, and this provides us the freedom of selecting
a convenient version to start our semantical investigations on.

It is usual to define a Turing machine by means of a sixtuple of sets. However, for
the purpose of semantics it is advantageous to start from a more syntactic definition.
For this purpose I introduce a pair of infinite alphabets @ = {90,9f,q1,...} and £ =
{30,55,31,...}. The elements of the alphabet Q are called states and the elements of
T are called (tape)symbols. The state go is called the start state and the state gy is
called the accepting state. The symbol s, is called the blank symbol. We denote moreover
M = {L,0,R}.

Definition 1 A Turing machine program is a string A in the language described by the
regular expression ((QZQIM])*.

Readers familiar with the traditional definition of a Turing machine will certainly
recognize that the above definition yields the quintuple programs of nondeterministic
Turing machines. The substrings of the form [QZQZM] in A are called instructions. It
should be observed that the observed complexity of Turing machine semantics is therefore
certainly not due to the complexity of the syntactic structure. The language of Turing
programs as defined above is a simple regular language.

The traditional semantics of the Turing machine is defined in terms of computations
and configurations. These concepts have syntactic definitions as well.

Deflnition 2 A configuration is a string c in the language described by the regular expres-
sion $£-QEE"$. An initial configuration is described by the regular expression $gZT"8.
An accepting configuration is described by the regular expression $T-¢g;TT"8.

It should be noted that the above definition yields a machine-independent concept of
configuration in general and initial and final configurations in particular. Our next notion
however requires the interaction between a configuration and a Turing program:

Definition 3 A configuration ¢ is terminal relative the Turing program A if the unique
substring of the form @X in c does not occur embedded in a substring of the form [QT in
A.

It is usual to express this notion by requiring that for the pair ¢;s; occurring in the
configuration c there is no instruction [¢;s;g»s;m] in A. As described above it seems that
the property of being a terminal configuration is context sensitive, but for fixed program A
the terminal (and therefore also the non-terminal) configurations form a regular language.

The next notion which must be introduced is the notion of a transition. It is common
to attach context sensitive production rules to instructions in the program. When this has
been done configurations no longer need a separate definition since they become nothing
but productions in the grammar described by these production rules.

Definition 4 With the program A we associate the following collection P(A) of context
sensitive production rules:

223

s for every instruction [g;3;g»8;:0] in A we introduce the production (g;s; = gis;») in
P(4)

o for every instruction [g:s;gs;»R] in A and every symbol g, which occurs in A we
introduce the productions (g;s;jsi = s;:gi»s:) in P(A); to this we add the production
(gi35% > s;0g058) in P(A)

e for every instruction [g;sjgss; L] in A and every symbol g, which occurs in A we
introduce the productions (skg;s; — gisxs;) in P(A); to this we add the production
(3g:3; > $girsps;:) in P(A)

o These are the only productions in P(A)

Definition 5 A transition between two configurations ¢ and ¢’ relative A, denoted ¢ A
is a one step production from c into ¢’ by the grammar P(A). A computation from ¢ to

¢’ of machine A, denoted A is a production from ¢ to ¢’ under the grammar P(A).
A full computation is a computation starting in an initial state and leading to a terminal
configuration. The full computation is accepting if its last configuration is.

The crucial part of the above definition is the transition between one step transitions
to computations. This is nothing but the step between a binary relation on the set of
all configurations to its transitive reflexive closure, which is a well known ingredient in
semantics. As we will see in the sequel it is precisely this transitive closure from which
the problems of understanding the semantics of Turing machine programs originate.

It remains to assign inputs and results to Turing machine computations. This is again
easily done by some syntactic definitions.

Definition 6 The result of some configuration c is equal to U(c) where the mapping U is
some simple gsm mapping, depending on the purpose of the computation intended.
The most common examples of results covered by this definition are:

e existence of a terminal configuration: here the gsm mapping U tests for the occur-
rence of a state-symbol pair for which no instruction is available in A. This is the
result which is relevant for accepting a set by halting.

o existence of an accepting configuration: here the gsm mapping U tests for the oc-
currence of the accepting state (which is assumed not to be active in any instruction
in A). This is the result which is relevant for recognizing a set by accepting.

e the result of a function evaluation: here the gsm mapping U tests for the occurrence
of the accepting state symbol, but at the same time all occurrences of the $-symbol,
the blank symbol s; and the state-symbols will be erased.

Definition 7 The initial configuration for some string z is the configuration i(z) = goz
It is usual to presume that z is nonempty and that the blank symbol doesn’t occur in
z. In the case of an empty input the initial configuration $gos,$ is used.
The above notions suffice for defining the operational semantics of Turing machine
programs. In order to assign to a program A some meaning M(A) which is a multi-valued

224

partial function from strings to results argues as follows: for the input string z the initial

configuration i(z) is constructed. Next all full computations i(z)»ﬁv-c’ are obtained and
for every resulting terminal configuration ¢ the result U(c') is computed. Then M(A) is
the function which maps z onto the set of results U(c’) obtained in this way.

3 Is the semantics of Turing machines compositional?

In the previous section I have given a definition of the traditional operational semantics
of Turing machines. But why is this called an operational semantics? It seems that this
name is used only because the semantics has been obtained using computation sequences
consisting of configurations connected by computation steps, where each computation
step is performed by execution of some instruction in the program. This interpretation,
however, only refers to the names we have given to our syntactic objects used in the
definitions. In fact the whole definition above is given in terms of well known mathematical
structures, like regular languages, production rules, grammars, gsm mappings, a transition
relation and its reflexive transitive closure.
If we put everything together we can rephrase the entire definition by the formula:

M(4) = 2=[U((A)(i(=)))] (i)

It should be self evident that the above formula is as mathematical and as denotational
as one might ever require; all operators in this formula have a clear mathematical meaning
which, in principle, is easily formalized in the language of set theory. If the above semantics
therefore is called operational this is not caused by the semantics itself but rather by the
way it has been traditionally been looked upon within computer science.

The more relevant question to ask is whether the semantics as described by formula i is
compositional or not. Here I refer to the well known Fregean principle of compositionality
which is expressed by the assertion:

The meaning of some compound ezpression is composed from the meanings of its parts

According to the reconstruction of the algebraic content of the compositionality prin-
ciple which was given by Theo Janssen in his 1983 dissertation [4], we may obtain a
compositional semantics according to i provided we can assign both to the language of
Turing machine programs and to its semantics the structure of an algebra, and do so in
such a way that the above mapping M becomes a homomorphism. The algebra on the
semantic structure may be obtained by combining operators from another algebra like
set theory into so-called polynomial operators, according to the guideline polynomial is
safe. At the same time we may exploit all imaginable tricks in restructuring the syntactic
structure of the programs in order to tune the syntactic algebra towards the semantic
algebra.

Now the following observations can be made.

1. The transformation from instructions in A to production rules in P(A) is of a
straightforward permutational nature; the symbols are slightly permuted. This op-
eration is easily expressed by polynomial operators over the algebra of strings and
sets

225

2. The transformation from a production rules to the set of all single step productions
performed using this production is a polynomial operator in the algebra of sets of
strings

3. The single step production relation — according to a set of production rules is the
union of the relations according to the individual productions (a clear instance of
homomorphic behavior where the operator concatenation is mapped onto union)

4. The transition from single step productions to many step productions which repre-
sent computations is represented by the transitive reflexive closure operator which
belongs to the algebra of sets and strings and relations

5. The final semantics 4 is obtained by pre- and post-multiplication with simple map-
pings belonging to the algebra of strings and sets

The above observations show us how to restructure the syntax of our Turing machine
programs. The individual 5 steps are reflected if we restructure the grammar describing
Turing machine programs as follows:

instruction ::= ’[’state,symbol,state,symbol,move’]’ $ step 1
instructionl ::= instruction $ step 2
programl ::= (instructionil)=* $ step 3
program2 ::= programil $ step 4
program ::= program2 $ step &

In this restructuring of the grammar we have introduced three unit-rules which express
the changes of types for the underlying semantic objects from (set of) rules to subsets of
the transition relation, and from the transition relation to its transitive closure and next
to its input-result relation. Such lifting rules are a common tool in Montague grammar.

It should be noted at this point that we have obtained a compositional semantics for
Turing machine programs without modifying the traditional semantics (widely believed to
be an operational semantics) just by reconsidering the semantics and slightly restructuring
the syntax. The key idea is that the juxtaposition of instructions should be mapped onto
the union of relations, and that this union should be performed before subjecting the
transition relation to the transitive closure (as expressed by the lifting rules).

One could make the objection that the second step in the semantics described above,
which transforms production rules into single step productions requires knowledge of the
complete tape alphabet of the involved Turing machine. There are several solutions to
this problem. One can specify the tape alphabet at the start of the construction and turn
it into a constant of the semantics for this particular device A. An alternative is to work
with the infinite alphabet ¥ as introduced in the previous section. The fact that in the
transition many tape symbols are allowed which won’t be used by the actual machine
has no influence on the eventual semantics according to our construction. Finally one
can restrict oneself to Turing automata over a fixed alphabet; as is well known this can
be done without loss of generality. Note that a similar problem with the state alphabet
doesn’t arise, due to the fact that we may restrict ourselves to those strings which contain
exactly one symbol from Q.

226

The observation that compositionality for a well understood semantical interpretation
can be obtained by modifying the syntax is not new. In the dissertation of Theo Janssen
mentioned before [5] there are presented a number of examples in early extensions of Mon-
tague grammar where authors have deviated from the compositionality principle mainly on
behalf of syntactic prejudice; the semantic phenomena they were after were easily brought
within the scope of the compositionality principle by having another look at the syntax.

The reconstruction of a compositional semantics for Turing machines in this note
illustrates that similar prejudices may lead to misconceptions in programming language
semantics as well.

The positive result of our exercise does not mean that the compositionality achieved
will be very helpful in understanding the behavior of Turing machines. The transitive
closure operator easily will obliterate all structure of the union operator on the instructions.
The complexity is caused by the fact that union and transitive closure are non-commuting
operators, but that is a situation which is not unusual in mathematics.

Only for programs which are structured in some very restricted way this union may
sort of commute with the transitive closure and reappear in the shape of a meaningful
operation like functional composition, nondeterministic choice, iteration or one of the other
composition operators which are well known in the theory of semantics of programming
languages. See for example the description of the combination of Turing machines, called
machine schemata in section 4.3 of [7]. What we have achieved therefore by our analysis
is that we may start to understand why such restrictions on the program structure are
required and what kind of restrictions we should aim for. The real work, however still has
to be done. Clearly an interesting research topic for the next 25 years.

References

[1] Dijkstra, E.W., A Discipline of Programming, Prentice Hall Series in Automatic Com-
putation 1976.

[2] Report on the Busy beaver competition 1982/83 distributed at the 6th conference on
theoretical computer science, Jan 05-07, 1983, Dortmund. See also EATCS bulletin
vol. 19, Feb 1983, pp. 77

[3] Hoperoft, J.E. and Ullman, 1.D., Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley (1979)

[4] Janssen, T.M.V., Foundations and applications of Montague grammar, Part 1: Phi-
losophy, framework, computer science, CWI Tract 19 (1986)

[5] Janssen, T.M.V., Foundations and applications of Montague grammar, Part 2: Ap-
plications to natural language, CWT Tract 28 (1986)

[6] Janssen, T.M.V. and van Emde Boas, P., Some observations on compositional seman-
tics, in Kozen, D., ed., Logic of programs, Proceedings 1981, Springer Lecture notes
in computer science 131 (1982) pp. 137-149

[7] Lewis, H.R. and Papadimitriou, C.H., Elements of the Theory of Computation,
Prentice-Hall (1981)

227

[8] Rogers, H. Jr, Theory of Recursive Functions and Effective Computability, Mc Graw-
Hill Series in Higher Mathematics (1967)

[9] Turing, A.M., On computable numbers, with an application to the entscheidungsprob-
lem, Proc. London Math. Soc. ser. 2, 42 (1936) 230-265

(10] van Emde Boas, P. Machine models and simulations, to appear in J. van Leeuwen
(ed.), Handbook of theoretical computer science, North Holland Publ. Comp. 1989.
Preprint: rep. ITLI-C5-89-02.

